If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8d^2+d-5=0
a = 8; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·8·(-5)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{161}}{2*8}=\frac{-1-\sqrt{161}}{16} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{161}}{2*8}=\frac{-1+\sqrt{161}}{16} $
| 7=-4r+7+4r | | (5x+4)°=(x+26)° | | F(x)=-3x+30 | | f(10)=10/2+8 | | t2− 2=1 | | 12-(4y+8)=0.5(8y-16 | | (7x+16)+39=180 | | 49x+1711x-67=44(40x+23) | | -10=t8 | | y–19=–28 | | 3p-p+2=4(2p-1) | | 7/4h=1/4h−12h | | (4x-17)+36+61=180 | | F(x)=4x+32 | | 0=5+p-p | | –14+2k=9k | | (6x-4)+(3x+4)=190 | | f(10)=1/2+8 | | 3x+10+3x=-50 | | (6x-4)+(3x+4)=189 | | F(x)=-2x+16 | | x+23+x+61=189 | | 8w+38=-3(6-4w) | | 2(3x+7)=5x+32 | | -|2b−9|=|b−6| | | (8x-10)+(6x+20)=180 | | -61=8-0.333(12w+42)-w | | 7/1=n/7 | | 5(x+2)-7=18 | | 4(x+12)=46 | | 2.66+y=18 | | 32-7m=28 |